不同经纬度黄芩代谢差异的综合研究

孙卫敏, 曾伟民, 贾向前, 张彦龙, 刘洋

中国药学杂志 ›› 2023, Vol. 58 ›› Issue (17) : 1554-1562.

PDF(1663 KB)
PDF(1663 KB)
中国药学杂志 ›› 2023, Vol. 58 ›› Issue (17) : 1554-1562. DOI: 10.11669/cpj.2023.17.004
论著

不同经纬度黄芩代谢差异的综合研究

  • 孙卫敏, 曾伟民, 贾向前, 张彦龙*, 刘洋*
作者信息 +

A Comprehensive Study on the Differences Between Scutellaria baicalensis Georgi Metabolism at Different Latitudes and Longitudes

  • SUN Weimin, ZENG Weimin, JIA Xiangqian, ZHANG Yanlong*, LIU Yang*
Author information +
文章历史 +

摘要

目的 研究经纬度对黄芩代谢物的影响。方法 本试验以4个不同经纬度地区黄芩为试验材料,分析温度、海拔、光照和降水等环境因子对黄芩代谢的影响,利用气相色谱-质谱法(GC-MS)和超高效液相色谱-质谱法(UPLC-MS)对其化合物进行代谢组学分析,筛选出33种初级差异代谢物,40种黄酮类化合物,比较黄芩代谢物含量与经纬度之间的相关性。结果 不同栽培区黄芩初级及次级代谢物含量差异较大,具有显著区域性,说明黄芩对不同经纬度下的环境具有不同的适应性,且受温度、海拔、光照和降水的协同影响。结论 了解黄芩对不同经纬度的适应性,为进一步研究多种环境因素对植物代谢产物的影响提供更多经验。

Abstract

OBJECTIVE To understand the effect of latitude and longitude on the distribution of Scutellaria baicalensis Georgi metabolites. METHODS Physiological indicators such as temperature, altitude, light and precipitation were collected from four different latitudes and longitudes, and metabolomic analysis was performed using GC-MS and UPLC-MS methods to screen 33 primary differential metabolites and 40 flavonoids, and to compare the correlation between the metabolite contents of Scutellaria baicalensis Georgi and latitude and the results. RESULTS Primary and secondary metabolites of Scutellaria baicalensis Georgi varied greatly among different cultivation areas with significant regional variations, indicating that the species has different adaptations to the environment at different latitudes and is synergistically influenced by temperature, altitude, light and precipitation. CONCLUSION Understanding the adaptation of Scutellaria baicalensis Georgi to different latitudes and longitudes provides additional insights for farther studies on the effects of multiple environmental factors on plant metabolites.

关键词

黄芩 / 经纬度 / 代谢差异 / 气相色谱-质谱联用 / 超高效液相色谱-质谱联用

Key words

Scutellaria baicalensis Georgi / longitude and latitude / metabolic difference / GC-MS / UPLC-MS

引用本文

导出引用
孙卫敏, 曾伟民, 贾向前, 张彦龙, 刘洋. 不同经纬度黄芩代谢差异的综合研究[J]. 中国药学杂志, 2023, 58(17): 1554-1562 https://doi.org/10.11669/cpj.2023.17.004
SUN Weimin, ZENG Weimin, JIA Xiangqian, ZHANG Yanlong, LIU Yang. A Comprehensive Study on the Differences Between Scutellaria baicalensis Georgi Metabolism at Different Latitudes and Longitudes[J]. Chinese Pharmaceutical Journal, 2023, 58(17): 1554-1562 https://doi.org/10.11669/cpj.2023.17.004
中图分类号: R282   

参考文献

[1] LIAO H F, YE J, GAO L L, et al. The main bioactive compounds of Scutellaria baicalensis Georgi. for alleviation of inflammatory cytokines: a comprehensive review. Biomed Pharmacother, 2021, 133(3):110917. DOI:10.1016/j.biopha.2020.110917.
[2] SHEN S Y, GUAN X L, SONG H R, et al. Regulating effect and mechanism of baicalin magnesium on lipopolysaccharide-induced depressive behaviors and neuroinflammation in rats. Chin Pharm J (中国药学杂志), 2023, 58(4):338-346.
[3] WANG L, CHEN W, LI M M, et al. A review of the ethnopharmacology, phytochemistry, pharmacology, and quality control of Scutellaria barbata D. Don. J Ethnopharmacol 2019, 254(6):112260. DOI:10.1016/j.jep.2019.112260.
[4] WANG Z L, WANG S, KUANG Y, et al. A comprehensive review on phytochemistry, pharmacology, and flavonoid biosynthesis of Scutellaria baicalensis. Pharm Biol, 2018, 56(1):465-484.
[5] LI X, GAO Y, CHEN S Y, et al. Therapeutic potential of Scutellaria baicalensis Georgi in lung cancer therapy. Phytomedicine, 2021, 95(7):153727. DOI:10.1016/j.phymed.2021.153727.
[6] LIN ANG, LEE H W, KIM A, et al. Herbal medicine for treatment of children diagnosed with COVID-19: a review of guidelines. Complement Ther Clin , 2020, 39(5):101174. DOI:10.1016/j.ctcp.2020.101174.
[7] SHEN J, LI P, HE C N, et al. Simultaneous determination of 15 flavonoids from different parts of Scutellaria baicalensis and its chemometrics analysis. Chin Tradit Herb Drugs (中草药), 2019, 11(1):20-27.
[8] LI Y J, ZHANG J K, WANG B, et al. Comparison of the content of five flavonoids including baicalin in Scutellaria baicalensis medicinal materials of different origins. Lishizhen Med Mater Med Res (时珍国医国药), 2016, 27(12):2985-2988.
[9] LIU Y. Metabolomics was applied to study the metabolic basis of two Astragalus responses to UV-B and drought stress. Harbin: Northeast Forestry University, 2018.
[10] SHEN Y, SUN Y Q, ZHANG Q, et al. Effects of different origin and growth years on the formation and accumulation of cyclic ether terpene glycosides in Euphorbia baenens. Chin Tradit Herb Drugs (中草药), 2022, 53(17):5484-5490.
[11] ZHANG H Z, LIU D H, ZHANG D K, et al. Quality assessment of Panax notoginseng from different regions through the analysis of marker chemicals, biological potency and ecological factors. PLoS One, 2016, 11(10):e0164384. DOI:10.1371/journal.pone.0164384.
[12] DING X H, LUO S Z, LIU J W, et al. Longitude gradient changes on plant community and soil stoichiometry characteristics of grassland in Hulunbeir. Acta Ecol Sin(生态学报), 2012, 32(11):3467-3476.
[13] XU M, LI M, JIA Y, et al. Integrating the effects of latitude and altitude on the spatial differentiation of plant community diversity in a mountainous ecosystem in China. PLoS One, 2017, 12(3):e0174231. DOI:10.1371/journal.pone.0176866.
[14] SHEN Q, ZHAO J X, QIU X B, et al. Research on influence of environment factors to yield and quality traits of Perilla frutescen. China J Chin Mater Med (中国中药杂志), 2018, 43(20):4033-4043.
[15] SONG G W, LI D J. Effects of latitude on vegetative growth and grain yield of sweet Sorghum. J Plant Resour Environ (植物资源与环境), 1999, 8(4):30-60.
[16] TAKSHAK S, AGRAWAL S B. Defense potential of secondary metabolites in medicinal plants under UV-B stress. J Photoch Photobio B, 2019, 193(4):51-88.
[17] CAPPEPPO T, MAISANO M, MAUCERI A, et al. 1H-NMR-based metabolomics investigation on the effects of petrochemical contamination in posterior adductor muscles of caged mussel Mytilus galloprovincialis . Ecotox Environ Safe, 2017, 142(5):417-422.
[18] RADIC B, HAJNAL E J, MANDIC A, et al. Development and validation of an HPLC-DAD method for the determination of moniliformin in maize. J Food Process Pres, 2022, 46(10):e16008. DOI:10.1007/BF02942966.
[19] FATKENHEUER G, NELSON M, LAZZARIN A, et al. Subgroup analyses of maraviroc in previously treated R5 HIV-1 infection. New Engl J Med, 2008, 359(14):1442-1455.
[20] FUKUSAKI E, KOBAYASHI A. Plant metabolomics: potential for practical operation. J Biosci Bioeng, 2005, 100(4):347-354.
[21] LIU Y, LIU J, WANG H Z, et al. Comparison of the global metabolic responses to UV-B radiation between two medicinal Astragalus species: an integrated metabolomics strategy. Environ Exp Bot, 2020, 176(8):104094. DOI:10.1016/j.envexpbot.2120.104094.
[22] LIU J, LIU Y, WANG Y, et al. The integration of GC-MS and LC-MS to assay the metabolomics profiling in Panax ginseng and Panax quinquefolius reveals a tissue-and species-specific connectivity of primary metabolites and ginsenosides accumulation. J Pharm Biomed, 2017, 135(14):176-185.
[23] TRYGG J, WOLD S. Orthogonal projections to latent structures (O-PLS). J Chemometr, 2002, 16(3):119-128.
[24] ZANDALINAS S I, BALFAGON D, GOMEZ-CADENAS A, et al. Plant responses to climate change: metabolic changes under combined abiotic stresses. J Exp Bot, 2022, 73(11):3339-3354.
[25] ZHANG L, WANG X Y, GUO J Z, et al. Metabolic profiling of Chinese tobacco leaf of different geographical origins by GC-MS. J Agric Food Chem, 2013, 61(11):2597-2605.
[26] LEE E M, PARK S J, LEE I, et al. Highly geographical specificity of metabolomic traits among Korean domestic soybeans (Glycine max). Food Res Int, 2019, 120(6):12-18.
[27] ZHANG Y G, HAN M, JIANG X, et al. Effect of environmental factors on photosynthetic physiology and flavonoid constituent of Scutellaria baicalensis. China J Chin Mater Med (中国中药杂志), 2014, 39(10):1761-1766.
[28] HOEKSTRA F A, GOLOVINA E A, BUITINK J. Mechanisms of plant desiccation tolerance. Trends Plant Sci, 2001, 6(9):431-438.
[29] COSGROVE, D J. Assembly and enlargement of the primary cell wall in plants. Annu Rev Cell Dev Biol, 1997, 13(1):171-201.
[30] WEI S, YANG X, HUO G, et al. Distinct metabolome changes during seed germination of lettuce (Lactuca sativa L) in response to rhermal stress as revealed by untargeted metabolomics analysis. Int J Mol Sci, 2020, 21(4):1481-1498.
[31] YANG N. The study on metabolism of fatty acids of Astragalus membranaceus seeds during seedling morphology. Harbin: Northeast Forestry University, 2019.
[32] ZHANG J L, ZHANG S B, ZHANG Y P, et al. Effects of phylogeny and climate on seed oil fatty acid composition across 747 plant species in China. Ind Crops Prod, 2015, 63(1):1-8.
[33] TSCHOEP H, GIBON Y, CARILLO P, et al. Adjustment of growth and central metabolism to a mild but sustained nitrogen-limitation in Arabidopsis. Plant Cell Environ 2009, 32(3):300-318.
[34] NUNES-NESI A, FEENIE AR, STITT M. Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions. Mol Plant, 2010, 3(6):973-966.
[35] FERNIE A R, CARRARI F, SWEETLOVE L J. Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport. Curr Opin Plant Biol, 2004, 7(3):254-261.
[36] WAHID A. Physiological implications of metabolite biosynthesis for net assimilation and heat-stress tolerance of sugarcane (Saccharum officinarum) sprouts. J Plant Res, 2007, 120(2):219-228.
[37] ZOBAYED S M A, AFREEN F, KOZAI T. Temperature stress can alter the photosynthetic efficiency and secondary metabolite concentrations in St. John's wort. Plant Physiol Bioch, 2005, 43(10-11):977-984.
[38] MIERZIAK J, KOSTYN K, ANGLE A. Flavonoids as important molecules of plant interactions with the environment. Molecules, 2014, 19(10):16240-16265.
[39] LYNCH J H, QIAN Y C, GUO L Y, et al. Modulation of auxin formation by the cytosolic phenylalanine biosynthetic pathway. Nat Chem Biol, 2020, 16(8):850-856.
[40] HARBORNE J B, WILLIAMS C A. Advances in favonoid research since 1992. Phytochemistry, 2000, 55(6):481-504.
[41] HERNANDEZ I, ALEGRE L, BREUSEGEM F V, et al. How relevant are flavonoids as antioxidants in plants?. Trends Plant Sci, 2009, 14(3):125-132.
[42] WINKEL-SHIRLEY B. Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol, 2002, 5(3):218-223.
[43] DENG B, SHANG X L, FANG S Z, et al. Integrated effects of light intensity and fertilization on growth and flavonoid accumulation in Cyclocarya paliurus. J Agric Food Chem, 2012, 60(25):6286-6292.
[44] STARK S, JULKUNEN-TIITTO R, HOLAPPA E, et al. Concentrations of foliar Quercetin in natural populations of white birch (Betula pubescens) increase with latitude. J Chem Ecol, 2008, 34(11):1382-1391.
[45] CHENG L, HAN M, YANG L M, et al. Changes in the physiological characteristics and baicalin biosynthesis metabolism of Scutellaria baicalensis Georgi under drought stress. Ind Crop Prod, 2018, 122(10):473-482.
[46] GHARARI Z, BAGHERI K, DANAFAR H, et al. Simultaneous determination of baicalein, chrysin and wogonin in four iranian Scutellaria species by high performance liquid chromatography. J Appl Res Med Aroma, 2020, 16(11):100232. DOI:10.1016/j-jarmap.2019.100232.
[47] SHEN J, LI P, HE C N, et al. Simultaneous determination of 15 flavonoids from different parts of Scutellaria baicalensis and its chemometrics analysis. Chin Herb Med(中草药), 2019, 11(1):20-27.
[48] ZHENG Y Y, ZHOU S N, ZHANG H K, et al. Comparative study of the flavonoid content in radix Scutellaria from different cultivation areas in China. Int J Anal Chem, 2023, 2023(2):3754549. DOI:10.1155/2023/3754549.
[49] NEUGART S, KLAERING H P, ZIETZ M, et al. The effect of temperature and radiation on flavonol aglycones and flavonol glycosides of kale (Brassica oleracea var. sabellica). Food Chem, 2012, 133(4):1456-1465.
[50] SCHULZ E, TOHGE T, ZUTHER E, et al. Flavonoids are determinants of freezing tolerance and cold acclimation in Arabidopsis thaliana. Sci Rep-UK, 2016, 6(9):3754549. DOI:10.1038/srep34027.
[51] GERGANOVA M, POPOVA A V, STANOEVA D, et al. Tomato plants acclimate better to elevated temperature and high light than to treatment with each factor separately. Plant Physiol Bioch, 2016, 104(3):234-241.
[52] MILLETT J, FOOT G W, THOMPSON J C, et al. Geographic variation in sundew (Drosera) leaf colour: plant-plant interactions counteract expected effects of abiotic factors. J Biogeogr, 2017,45(3):582-592.

基金

省属高校基本科研业务费专项资金资助(2572017DA05)
PDF(1663 KB)

245

Accesses

0

Citation

Detail

段落导航
相关文章

/